Maximal subgroups of free idempotent generated semigroups

York Semigroup
28th January 2015

Victoria Gould
University of York

Ori．．． Groups and idempotents

York Semigroup
28th January 2015

Victoria Gould
University of York

Semigroups and monoids

Throughout，S is a semigroup i．e．a set with an associative binary operation．

If $\exists 1 \in S$ with $1 a=a=a 1$ for all $a \in S$ ，then S is a monoid．
An idempotent is an element $e \in S$ such that $e=e^{2}$
Let $E=\{e \in S: e$ is idempotent $\}=E(S)$ ．
If S is a monoid，then clearly $1 \in E$ ．

Semigroups and monoids

Throughout, S is a semigroup i.e. a set with an associative binary operation.

If $\exists 1 \in S$ with $1 a=a=a 1$ for all $a \in S$, then S is a monoid.
An idempotent is an element $e \in S$ such that $e=e^{2}$.
Let $E=\{e \in S: e$ is idempotent $\}=E(S)$.
If S is a monoid, then clearly $1 \in E$.

Examples of semigroups

－Groups
－Multiplicative semigroups of rings，e．g．$M_{n}(\mathbb{R})$
－Let X be a set：

$$
\begin{aligned}
\mathcal{T}_{X}: & =\{\alpha \mid \alpha: X \rightarrow X\} \\
\mathcal{P} \mathcal{T}_{X}: & =\{\alpha \mid \alpha: Y \rightarrow Z, Y, Z \subseteq X\} \\
S_{X}: & =\{\alpha \mid \alpha: X \rightarrow X, \alpha \text { bijective }\} \\
\mathcal{I}_{X}: & =\{\alpha \mid \alpha: Y \rightarrow Z, Y, Z \subseteq X, \alpha \text { one-one }\}
\end{aligned}
$$

are monoids under \circ ，the full transformation monoid，the partial transformation monoid，the symmetric group，and the symmetric inverse monoid on X ，respectively．
－If $X=\underline{n}=\{1, \ldots, n\}$ ，then we usually write \mathcal{T}_{n} for \mathcal{T}_{X} ，etc．

Examples of semigroups

- Groups
- Multiplicative semigroups of rings, e.g. $M_{n}(\mathbb{R})$
- Let X be a set:

are monoids under \circ, the full transformation monoid, the partial transformation monoid, the symmetric group, and the symmetric inverse monoid on X, respectively.
- If $X=\underline{n}=\{1, \ldots, n\}$, then we usually write \mathcal{T}_{n} for \mathcal{T}_{X}, etc.

Examples of semigroups

－Groups
－Multiplicative semigroups of rings，e．g．$M_{n}(\mathbb{R})$
－Let X be a set：

$$
\begin{aligned}
\mathcal{T}_{X}: & =\{\alpha \mid \alpha: X \rightarrow X\} \\
\mathcal{P} \mathcal{T}_{X}: & =\{\alpha \mid \alpha: Y \rightarrow Z, Y, Z \subseteq X\} \\
\mathcal{S}_{X}: & =\{\alpha \mid \alpha: X \rightarrow X, \alpha \text { bijective }\} \\
\mathcal{I}_{X}: & =\{\alpha \mid \alpha: Y \rightarrow Z, Y, Z \subseteq X, \alpha \text { one-one }\}
\end{aligned}
$$

are monoids under \circ ，the full transformation monoid，the partial transformation monoid，the symmetric group，and the symmetric inverse monoid on X ，respectively．
－If $X=\underline{n}=\{1, \ldots, n\}$ ，then we usually write \mathcal{T}_{n} for \mathcal{T}_{X} ，etc．

Examples of semigroups

－Groups
－Multiplicative semigroups of rings，e．g．$M_{n}(\mathbb{R})$
－Let X be a set：

$$
\begin{aligned}
\mathcal{T}_{X}: & =\{\alpha \mid \alpha: X \rightarrow X\} \\
\mathcal{P} \mathcal{T}_{X}: & =\{\alpha \mid \alpha: Y \rightarrow Z, Y, Z \subseteq X\} \\
\mathcal{S}_{X}: & =\{\alpha \mid \alpha: X \rightarrow X, \alpha \text { bijective }\} \\
\mathcal{I}_{X}: & =\{\alpha \mid \alpha: Y \rightarrow Z, Y, Z \subseteq X, \alpha \text { one-one }\}
\end{aligned}
$$

are monoids under \circ ，the full transformation monoid，the partial transformation monoid，the symmetric group，and the symmetric inverse monoid on X ，respectively．
－If $X=\underline{n}=\{1, \ldots, n\}$ ，then we usually write \mathcal{T}_{n} for \mathcal{T}_{X} ，etc．

Examples of semigroups: free semigroups

- Let X be a set and let

$$
X^{+}=\left\{x_{1} \ldots x_{n}: n \in \mathbb{N}\right\}
$$

with

$$
\left(x_{1} \ldots x_{n}\right)\left(y_{1} \ldots y_{m}\right)=x_{1} \ldots x_{n} y_{1} \ldots y_{m}
$$

Then X^{+}is the free semigroup on X.

Monoids of endomorphisms

Let A be set with structure e．g．A is partially ordered，or A is an algebra （in the sense of universal algebra）．

Let

$$
\text { End } A=\{\alpha \mid \alpha: A \rightarrow A \text { preserves the structure }\} .
$$

Then End A is a monoid，the endomorphism monoid of A ．

Bands

A band is a semigroup S such that $S=E(S)$.
Let I, Λ be non-empty sets, let $T=I \times \Lambda$ and define

$$
(i, \lambda)(k, \mu)=(i, \mu)
$$

Then T is a band, the rectangular band on $I \times \Lambda$.

(i, λ)			$(i, \lambda)(k, \mu)$ $=(i, \mu)$	
			(k, μ)	

[^0]
Bands

A band is a semigroup S such that $S=E(S)$.
Let I, Λ be non-empty sets, let $T=I \times \Lambda$ and define

$$
(i, \lambda)(k, \mu)=(i, \mu)
$$

Then T is a band, the rectangular band on $I \times \Lambda$.

(i, λ)			$(i, \lambda)(k, \mu)$ $=(i, \mu)$	
			(k, μ)	

T is only a monoid if it is trivial.

Idempotent generated semigroups

For a subset A of a semigroup S we put

$$
\langle A\rangle=\left\{a_{1} \ldots a_{n}: n \geq 1, a_{i} \in A\right\}
$$

$\langle A\rangle$ is the subsemigroup generated by A.
Clearly X^{+}is generated by X.
S is idempotent generated if $S=\langle E\rangle$

Idempotent generated semigroups

For a subset A of a semigroup S we put

$$
\langle A\rangle=\left\{a_{1} \ldots a_{n}: n \geq 1, a_{i} \in A\right\}
$$

$\langle A\rangle$ is the subsemigroup generated by A ．
Clearly X^{+}is generated by X ．
S is idempotent generated if $S=\langle E\rangle$ ．

Examples of idempotent generated semigroups

Some familiar semigroups are idempotent generated:
Example 1 For $\alpha \in \mathcal{T}_{n}$ let $\mathbf{r a n k} \alpha=|\operatorname{Im} \alpha|$. Clearly

$$
\mathcal{S}_{n}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank} \alpha=n\right\} .
$$

Then $S\left(\mathcal{T}_{n}\right)$ is idempotent generated (Howie, 1966)
$S\left(T_{n}\right)$ is called the singular part of T_{n} and often denoted Sing ${ }_{n}$.

Examples of idempotent generated semigroups

Some familiar semigroups are idempotent generated:
Example 1 For $\alpha \in \mathcal{T}_{n}$ let $\mathbf{r a n k} \alpha=|\operatorname{Im} \alpha|$. Clearly

$$
\mathcal{S}_{n}=\left\{\alpha \in \mathcal{T}_{n}: \operatorname{rank} \alpha=n\right\} .
$$

Let

$$
S\left(\mathcal{T}_{n}\right)=\left\{\alpha \in \mathcal{T}_{n} \mid \text { rank } \alpha<n\right\} .
$$

Then $S\left(\mathcal{T}_{n}\right)$ is idempotent generated (Howie, 1966).
$S\left(\mathcal{T}_{n}\right)$ is called the singular part of \mathcal{T}_{n} and often denoted Sing_{n}.

Examples of idempotent generated semigroups

Example 2 Let D be a division ring. Then

$$
S\left(M_{n}(D)\right)=\left\{A \in M_{n}(D): \text { rank } A<n\right\}
$$

is idempotent generated (J.A. Erdös, 1967, Dawlings, 1979, Laffey, 1973).

Example 3 Let A be an independence algebra with rank $A=n$. Then

$$
S(\operatorname{End} A)=\{\alpha \in \operatorname{End}(A): \operatorname{rank} \alpha<n\}
$$

is idempotent generated (Fountain and Lewin, 1992.)

Examples of idempotent generated semigroups

Example 2 Let D be a division ring. Then

$$
S\left(M_{n}(D)\right)=\left\{A \in M_{n}(D): \text { rank } A<n\right\}
$$

is idempotent generated (J.A. Erdös, 1967, Dawlings, 1979, Laffey, 1973).

Example 3 Let A be an independence algebra with rank $A=n$. Then

$$
S(\operatorname{End} A)=\{\alpha \in \operatorname{End}(A): \operatorname{rank} \alpha<n\}
$$

is idempotent generated (Fountain and Lewin, 1992.)

Green's relations: $\mathcal{R}, \mathcal{L}, \mathcal{H}$ and \mathcal{D}

Let S be a semigroup. Then

$$
\begin{array}{rclll}
a \mathcal{R} b & \Leftrightarrow & a S^{1}=b S^{1} & \Leftrightarrow a=b s, b=a t, s, t \in S^{1} \\
a \mathcal{L} b & \Leftrightarrow & S^{1} a=S^{1} b & \Leftrightarrow & a=s b, b=t a, s, t \in S^{1} \\
\mathcal{H} & = & \mathcal{L} \cap \mathcal{R} & & \\
\mathcal{D}=\mathcal{L} \vee \mathcal{R}= & \mathcal{R} \circ \mathcal{L}=\mathcal{L} \circ \mathcal{R} . &
\end{array}
$$

Green's relations: $\mathcal{R}, \mathcal{L}, \mathcal{H}$ and \mathcal{D}

Let S be a semigroup. Then

$$
\begin{array}{rllll}
a \mathcal{R} b & \Leftrightarrow & a S^{1}=b S^{1} & \Leftrightarrow a=b s, b=a t, s, t \in S^{1} \\
a \mathcal{L} b & \Leftrightarrow & S^{1} a=S^{1} b & \Leftrightarrow & a=s b, b=t a, s, t \in S^{1} \\
\mathcal{H} & = & \mathcal{L} \cap \mathcal{R} & & \\
\mathcal{D}=\mathcal{L} \vee \mathcal{R}= & \mathcal{R} \circ \mathcal{L}=\mathcal{L} \circ \mathcal{R} . &
\end{array}
$$

A trick to note For $e, f \in E$, if $e S^{1} \subseteq f S^{1}$, then from $e=f u$ we obtain

$$
f e=f f u=f u=e
$$

Hence

$$
\begin{aligned}
& e \mathcal{R} f \quad \Leftrightarrow \quad e f=f \text { and } f e=e \\
& e \mathcal{L} f \quad \Leftrightarrow \quad \text { ef }=e \text { and } f e=f .
\end{aligned}
$$

A curious thought

Let G be a group. How is G related to idempotents?
A group has precisely one idempotent, thus G is idempotent generated if and only if G is trivial.

A subgroup of S is a subsemigroup of S that is a group under the restricted product.

Fact The maximal subgroups of S are the \mathcal{H}-classes

Is it possible that G is a subgroup of S such that

$$
G \subset\langle E\rangle ?
$$

Yes! Let $|G|=r<\infty$. Pick $\epsilon=\epsilon^{2} \in S=S\left(\mathcal{T}_{n}\right)$ with rank $\epsilon=r$; it is
known that $H_{\epsilon} \cong \mathcal{S}_{r}$. Then

A curious thought

Let G be a group. How is G related to idempotents?
A group has precisely one idempotent, thus G is idempotent generated if and only if G is trivial.

A subgroup of S is a subsemigroup of S that is a group under the restricted product.

Fact The maximal subgroups of S are the \mathcal{H}-classes

$$
H_{e}, e \in E .
$$

Is it possible that G is a subgroup of S such that

$$
G \subseteq\langle E\rangle ?
$$

Yes! Let $|G|=r<\infty$. Pick $\epsilon=\epsilon^{2} \in S=S\left(\mathcal{T}_{n}\right)$ with rank $\epsilon=r$; it is
known that $H_{\epsilon} \cong \mathcal{S}_{r}$. Then

A curious thought

Let G be a group. How is G related to idempotents?
A group has precisely one idempotent, thus G is idempotent generated if and only if G is trivial.

A subgroup of S is a subsemigroup of S that is a group under the restricted product.

Fact The maximal subgroups of S are the \mathcal{H}-classes

$$
H_{e}, e \in E .
$$

Is it possible that G is a subgroup of S such that

$$
G \subseteq\langle E\rangle ?
$$

Yes! Let $|G|=r<\infty$. Pick $\epsilon=\epsilon^{2} \in S=S\left(\mathcal{T}_{n}\right)$ with rank $\epsilon=r$; it is known that $H_{\epsilon} \cong \mathcal{S}_{r}$. Then

$$
G \leq \mathcal{S}_{r} \cong H_{\epsilon} \subseteq S=\langle E\rangle
$$

Free G-acts

Let G be a group and $n \in \mathbb{N}$.
The free G-act $F_{n}(G)$ is given by

$$
F_{n}(G)=G x_{1} \cup G x_{2} \cup \ldots \cup G x_{n}
$$

where

$$
\left.g\left(h x_{i}\right)=(g h) x_{i} \text { (note we identify } x_{i} \text { with } e x_{i}\right) .
$$

If $\alpha \in$ End $F_{n}(G)$ then $\left(g x_{i}\right) \alpha=g\left(x_{i} \alpha\right)$ and we can write $\alpha \in$ End $F_{n}(G)$

Note that $F_{n}(G)$ is an independence algebra, so

$$
S\left(\text { End } F_{n}(G)\right)=\left\{\alpha \in E n d F_{n}(G): \operatorname{rank} \alpha<n\right\}=\langle E\rangle .
$$

Free G－acts

Let G be a group and $n \in \mathbb{N}$ ．
The free G－act $F_{n}(G)$ is given by

$$
F_{n}(G)=G x_{1} \cup G x_{2} \cup \ldots \cup G x_{n}
$$

where

$$
\left.g\left(h x_{i}\right)=(g h) x_{i} \text { (note we identify } x_{i} \text { with } e x_{i}\right)
$$

If $\alpha \in$ End $F_{n}(G)$ then $\left(g x_{i}\right) \alpha=g\left(x_{i} \alpha\right)$ and we can write $\alpha \in$ End $F_{n}(G)$ as

$$
\alpha=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
g_{1} x_{1 \bar{\alpha}} & g_{2} x_{2 \bar{\alpha}} & \ldots & g_{n} x_{n \bar{\alpha}}
\end{array}\right) .
$$

Note that $F_{n}(G)$ is an independence algebra，so

$$
S^{\prime}\left(\text { End } F_{n}(G)\right)=\left\{\alpha \in E n d F_{n}(G): \operatorname{rank} \alpha<n\right\}=\langle E\rangle
$$

Free G-acts

Let G be a group and $n \in \mathbb{N}$.
The free G-act $F_{n}(G)$ is given by

$$
F_{n}(G)=G x_{1} \cup G x_{2} \cup \ldots \cup G x_{n}
$$

where

$$
\left.g\left(h x_{i}\right)=(g h) x_{i} \text { (note we identify } x_{i} \text { with } e x_{i}\right) .
$$

If $\alpha \in$ End $F_{n}(G)$ then $\left(g x_{i}\right) \alpha=g\left(x_{i} \alpha\right)$ and we can write $\alpha \in$ End $F_{n}(G)$ as

$$
\alpha=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
g_{1} x_{1 \bar{\alpha}} & g_{2} x_{2 \bar{\alpha}} & \ldots & g_{n} x_{n \bar{\alpha}}
\end{array}\right) .
$$

Note that $F_{n}(G)$ is an independence algebra, so

$$
S\left(\text { End } F_{n}(G)\right)=\left\{\alpha \in \operatorname{End} F_{n}(G): \operatorname{rank} \alpha<n\right\}=\langle E\rangle .
$$

Free G-acts: rank $1 \mathcal{D}$-class

For elements $\alpha, \beta \in$ End $F_{n}(G)$ or $S=S\left(\operatorname{End} F_{n}(G)\right)$ we have

$$
\begin{aligned}
\alpha \mathcal{R} \beta & \Leftrightarrow \operatorname{Ker} \alpha=\operatorname{Ker} \beta \\
\alpha \mathcal{L} \beta & \Leftrightarrow \operatorname{Im} \alpha=\operatorname{Im} \beta \\
\alpha \mathcal{D} \beta & \Leftrightarrow \operatorname{rank} \alpha=\operatorname{rank} \beta .
\end{aligned}
$$

Let $D_{1}=\{\alpha \in S:$ rank $\alpha=1\}$.

Fact D_{1} is completely simple. That is,
and each $H_{i \lambda}$ is a group; moreover,
$H_{i \lambda} H_{j \mu} \subseteq H_{i \mu}$.

Free G-acts: rank $1 \mathcal{D}$-class

For elements $\alpha, \beta \in$ End $F_{n}(G)$ or $S=S\left(\right.$ End $\left.F_{n}(G)\right)$ we have

$$
\begin{aligned}
\alpha \mathcal{R} \beta & \Leftrightarrow \operatorname{Ker} \alpha=\operatorname{Ker} \beta \\
\alpha \mathcal{L} \beta & \Leftrightarrow \operatorname{Im} \alpha=\operatorname{Im} \beta \\
\alpha \mathcal{D} \beta & \Leftrightarrow \operatorname{rank} \alpha=\operatorname{rank} \beta .
\end{aligned}
$$

Let $D_{1}=\{\alpha \in S:$ rank $\alpha=1\}$.
Fact D_{1} is completely simple. That is,

$$
D_{1}=\bigcup_{(i, \lambda) \in I \times \Lambda} H_{i \lambda}
$$

and each $H_{i \lambda}$ is a group; moreover,

$$
H_{i \lambda} H_{j \mu} \subseteq H_{i \mu}
$$

Free G-acts: rank $1 \mathcal{D}$-class

\underline{n} indexes the \mathcal{L}-classes L_{k}

$$
\alpha \in L_{k} \Leftrightarrow \operatorname{Im} \alpha=G x_{k} .
$$

I indexes \mathcal{R}-classes R_{i}
R_{1} corresponds to the kernel $\left\langle\left(x_{1}, x_{i}\right): 1 \leq i \leq n\right\rangle$
Put $H_{i \lambda}=R_{i} \cap L_{\lambda}$.

It is known that $H_{11} \cong H_{i \lambda} \cong G$, for any i, λ, so again,

Free G-acts: rank $1 \mathcal{D}$-class

\underline{n} indexes the \mathcal{L}-classes L_{k}

$$
\alpha \in L_{k} \Leftrightarrow \operatorname{Im} \alpha=G x_{k} .
$$

I indexes \mathcal{R}-classes R_{i}
R_{1} corresponds to the kernel $\left\langle\left(x_{1}, x_{i}\right): 1 \leq i \leq n\right\rangle$
Put $H_{i \lambda}=R_{i} \cap L_{\lambda}$.

It is known that $H_{11} \cong H_{i \lambda} \cong G$, for any i, λ, so again,

$$
G \leq\langle E\rangle
$$

Generating H_{11}

If rank $\alpha=1$, we have

$$
\alpha=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
g_{1} x_{i} & g_{2} x_{i} & \ldots & g_{n} x_{i}
\end{array}\right)
$$

for some $\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$ and $i \in \underline{n}$.
$1 \in \underline{n}$ corresponds to $i=1$, i.e. $\operatorname{Im} \alpha=G x_{1}$
$1 \in I$ corresponds to $\operatorname{Ker} \alpha=\left\langle\left(x_{1}, x_{i}\right): 2 \leq i \leq n\right\rangle$. i.e. $g_{1}=\ldots=g_{n}$. If $\alpha \in H_{11}$, then

for some $i \in I$. Hence $H_{11}=\left\{e_{11} e_{i \lambda} e_{11}: i \in I, \lambda \in \Lambda\right\}$ and $G \cong H_{11} \subset\langle E\rangle$

Generating H_{11}

If rank $\alpha=1$, we have

$$
\alpha=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
g_{1} x_{i} & g_{2} x_{i} & \ldots & g_{n} x_{i}
\end{array}\right)
$$

for some $\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$ and $i \in \underline{n}$.
$1 \in \underline{n}$ corresponds to $i=1$, i.e. $\operatorname{Im} \alpha=G x_{1}$
$1 \in I$ corresponds to $\operatorname{Ker} \alpha=\left\langle\left(x_{1}, x_{i}\right): 2 \leq i \leq n\right\rangle$. i.e. $g_{1}=\ldots=g_{n}$.
If $\alpha \in H_{11}$, then

$$
\alpha=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
g x_{1} & g x_{1} & \ldots & g x_{1}
\end{array}\right) \text { so } H_{11} \cong G
$$

for some $i \in I$. Hence $H_{11}=\left\{e_{11} e_{i \lambda} e_{11}: i \in I, \lambda \in \Lambda\right\}$ and

Generating H_{11}

If rank $\alpha=1$, we have

$$
\alpha=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
g_{1} x_{i} & g_{2} x_{i} & \ldots & g_{n} x_{i}
\end{array}\right)
$$

for some $\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$ and $i \in \underline{n}$.
$1 \in \underline{n}$ corresponds to $i=1$, i.e. $\operatorname{Im} \alpha=G x_{1}$
$1 \in I$ corresponds to $\operatorname{Ker} \alpha=\left\langle\left(x_{1}, x_{i}\right): 2 \leq i \leq n\right\rangle$. i.e. $g_{1}=\ldots=g_{n}$.
If $\alpha \in H_{11}$, then

$$
\begin{aligned}
\alpha & =\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
g x_{1} & g x_{1} & \ldots & g x_{1}
\end{array}\right) \text { so } H_{11} \cong G \\
& =\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
x_{1} & x_{1} & \ldots & x_{1}
\end{array}\right)\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
g x_{2} & x_{2} & \ldots & x_{2}
\end{array}\right)\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
x_{1} & x_{1} & \ldots & x_{1}
\end{array}\right) \\
& =e_{11} e_{i 2} e_{11}
\end{aligned}
$$

for some $i \in I$. Hence $H_{11}=\left\{e_{11} e_{i \lambda} e_{11}: i \in I, \lambda \in \Lambda\right\}$ and

$$
G \cong H_{11} \subseteq\langle E\rangle .
$$

Biordered sets

Let $E=E(S)$.
Definition For $e, f \in E$

$$
e \leq_{\mathcal{R}} f \Leftrightarrow f e=e \text { and } e \leq_{\mathcal{L}} f \Leftrightarrow e f=e .
$$

We have that $\leq_{\mathcal{R}}\left(\leq_{\mathcal{L}}\right)$ is a preorder with associated equivalence $\mathcal{R}(\mathcal{L})$.
Note If $e \leq_{\mathcal{R}} f$ then $f e=e$ and
so that ef $\in E$. We say that

Biordered sets

Let $E=E(S)$.
Definition For $e, f \in E$

$$
e \leq_{\mathcal{R}} f \Leftrightarrow f e=e \text { and } e \leq_{\mathcal{L}} f \Leftrightarrow e f=e .
$$

We have that $\leq_{\mathcal{R}}\left(\leq_{\mathcal{L}}\right)$ is a preorder with associated equivalence $\mathcal{R}(\mathcal{L})$.
Note If $e \leq_{\mathcal{R}} f$ then $f e=e$ and

$$
(e f)(e f)=e(f e) f=e e f=e f
$$

so that ef $\in E$. We say that
$e f, f e$ are basic products if $e \leq_{\mathcal{R}} f, f \leq_{\mathcal{R}} e, e \leq_{\mathcal{L}} f$ or $f \leq_{\mathcal{L}} e$.

Biordered sets

(1) Under basic products, E satisfies a number of axioms; if S is regular, an extra axiom holds.
(2) A biordered set is a partial algebra satisfying these axioms; if the extra one also holds it is a regular biordered set.
(3) A biordered set is regular if and only if $E=E(S)$ for a regular semigroup S Nambooripad (1979)
(1) The category of inductive groupoids whose set of identities form a regular biordered set is equivalent to the category of regular semigroups Nambooripad (1979).
© Any biordered set E is $E(S)$ for some semigroup S Easdown (1985).

Biordered sets

(1) Under basic products, E satisfies a number of axioms; if S is regular, an extra axiom holds.
(2) A biordered set is a partial algebra satisfying these axioms; if the extra one also holds it is a regular biordered set.
(3) A biordered set is regular if and only if $E=E(S)$ for a regular semigroup S Nambooripad (1979)
(1) The category of inductive groupoids whose set of identities form a regular biordered set is equivalent to the category of regular semigroups Nambooripad (1979)
(3) Any biordered set E is $E(S)$ for some semigroup S Easdown (1985)

Biordered sets

(1) Under basic products, E satisfies a number of axioms; if S is regular, an extra axiom holds.
(2) A biordered set is a partial algebra satisfying these axioms; if the extra one also holds it is a regular biordered set.
(3) A biordered set is regular if and only if $E=E(S)$ for a regular semigroup S Nambooripad (1979).
(1) The category of inductive groupoids whose set of identities form a regular biordered set is equivalent to the category of regular semigroups Nambooripad (1979)
(3) Any biordered set E is $E(S)$ for some semigroup S Easdown (1985)

Biordered sets

(1) Under basic products, E satisfies a number of axioms; if S is regular, an extra axiom holds.
(2) A biordered set is a partial algebra satisfying these axioms; if the extra one also holds it is a regular biordered set.
(3) A biordered set is regular if and only if $E=E(S)$ for a regular semigroup S Nambooripad (1979).
(3) The category of inductive groupoids whose set of identities form a regular biordered set is equivalent to the category of regular semigroups Nambooripad (1979).
(3) Any biordered set E is $E(S)$ for some semigroup S Easdown (1985).

Biordered sets

(1) Under basic products, E satisfies a number of axioms; if S is regular, an extra axiom holds.
(2) A biordered set is a partial algebra satisfying these axioms; if the extra one also holds it is a regular biordered set.
(3) A biordered set is regular if and only if $E=E(S)$ for a regular semigroup S Nambooripad (1979).
(3) The category of inductive groupoids whose set of identities form a regular biordered set is equivalent to the category of regular semigroups Nambooripad (1979).
(5) Any biordered set E is $E(S)$ for some semigroup S Easdown (1985).

Free idempotent generated semigroups

Let E be a biordered set．We can assume $E=E(S)$ for a semigroup S ．
Let

$$
\bar{E}=\{\bar{e}: e \in E\}
$$

and let

$$
\bar{E}^{+}=\left\{\overline{e_{1}} \ldots \overline{e_{n}}: n \geq 1, e_{i} \in E\right\}
$$

the free semigroup on \bar{E} ．
Definition

$$
\begin{aligned}
I G(E) & =\langle\bar{E}: \bar{e} \bar{f}=\overline{e f}, \text { ef } \text { is a basic product }\rangle \\
& =\bar{E}^{+} /\langle(\overline{e \bar{f}}, \overline{e f}): \text { ef is a basic product }\rangle .
\end{aligned}
$$

Free idempotent generated semigroups

Let E be a biordered set. We can assume $E=E(S)$ for a semigroup S.
Let

$$
\bar{E}=\{\bar{e}: e \in E\}
$$

and let

$$
\bar{E}^{+}=\left\{\overline{e_{1}} \ldots \overline{e_{n}}: n \geq 1, e_{i} \in E\right\}
$$

the free semigroup on \bar{E}.

Definition

$$
\begin{aligned}
I G(E) & =\langle\bar{E}: \bar{e} \bar{f}=\overline{e f}, \text { ef is a basic product }\rangle \\
& =\bar{E}^{+} /\langle(\bar{e} \bar{f}, \overline{e f}): \text { ef is a basic product }\rangle .
\end{aligned}
$$

Free idempotent generated semigroups

Facts

(1) $\mathrm{IG}(E)=\langle\bar{E}\rangle$.
(2) If $S=\langle E\rangle$, then $\bar{e} \mapsto e$ is an onto morphism.
(3) $E(\mathrm{IG}(E))=\bar{E} \cong E$, as a biordered set.
(- The above morphism is one-one on the set of \mathcal{R}-classes and \mathcal{L}-classes within a regular \mathcal{D}-class.

In view of the above, $\mathrm{I} G(E)$ is called the free idempotent generated semigroup on E.

Free idempotent generated semigroups

Facts

（1） $\mathrm{IG}(E)=\langle\bar{E}\rangle$ ．
（2）If $S=\langle E\rangle$ ，then $\bar{e} \mapsto e$ is an onto morphism．
（3）$E(\operatorname{IG}(E))=E \cong E$ ，as a biordered set．
（ The above morphism is one－one on the set of \mathcal{R}－classes and \mathcal{L}－classes within a regular \mathcal{D}－class．

In view of the above， $\mathrm{IG}(E)$ is called the free idempotent generated semigroup on E ．

Free idempotent generated semigroups

Facts

(1) $\mathrm{IG}(E)=\langle\bar{E}\rangle$.
(2) If $S=\langle E\rangle$, then $\bar{e} \mapsto e$ is an onto morphism.
(3) $E(\mathrm{IG}(E))=\bar{E} \cong E$, as a biordered set.
(1) The above morphism is one-one on the set of \mathcal{R}-classes and \mathcal{L}-classes within a regular \mathcal{D}-class.

In view of the above, $\mathrm{IG}(E)$ is called the free idempotent generated semigroup on E.

Free idempotent generated semigroups

Facts

(1) $\mathrm{IG}(E)=\langle\bar{E}\rangle$.
(2) If $S=\langle E\rangle$, then $\bar{e} \mapsto e$ is an onto morphism.
(3) $E(\mathrm{IG}(E))=\bar{E} \cong E$, as a biordered set.
(9) The above morphism is one-one on the set of \mathcal{R}-classes and \mathcal{L}-classes within a regular \mathcal{D}-class.

In view of the above, $\mathrm{IG}(E)$ is called the free idempotent generated
semigroup on E

Free idempotent generated semigroups

Facts

（1） $\mathrm{IG}(E)=\langle\bar{E}\rangle$ ．
（2）If $S=\langle E\rangle$ ，then $\bar{e} \mapsto e$ is an onto morphism．
（3）$E(\mathrm{IG}(E))=\bar{E} \cong E$ ，as a biordered set．
（9）The above morphism is one－one on the set of \mathcal{R}－classes and \mathcal{L}－classes within a regular \mathcal{D}－class．

In view of the above， $\operatorname{IG}(E)$ is called the free idempotent generated semigroup on E ．

Maximal subgroups of free idempotent generated semigroups

These groups are homotopy groups of complexes determined by idempotent sequences and singular squares.

For $M_{n}(D)$ the $\leq_{\mathcal{R}}$ and $\leq_{\mathcal{L}}$ orders are given by subspace inclusion.
Putcha and Renner's theory of algebraic monoids shows that for connected reductive monoids the biorder is intimately related to the Tits building of the group of units.

Since independence algebras are generalizations of vector spaces, there should be a way to see establish geometry there.

One aim is to relate the presentations of the maximal subgroups to the behaviour of the geometry.

Maximal subgroups of free idempotent generated semigroups

These groups are homotopy groups of complexes determined by idempotent sequences and singular squares.

For $M_{n}(D)$ the $\leq_{\mathcal{R}}$ and $\leq_{\mathcal{L}}$ orders are given by subspace inclusion.
Putcha and Renner's theory of algebraic monoids shows that for connected reductive monoids the biorder is intimately related to the Tits building of the group of units.

Since independence algebras are generalizations of vector spaces, there should be a way to see establish geometry there.

One aim is to relate the presentations of the maximal subgroups to the behaviour of the geometry.

What groups can arise as maximal subgroups of IG(E)?

(1) All such groups discovered in 1970s, 80s, 90s were free.
(2) 2002 it was formally conjectured that all such groups were free.
(3) 2009 Brittenham, Margolis and Meakin found $\mathbb{Z} \oplus \mathbb{Z}$ as a maximal subgroup of some IG (E).

Result of Gray and Ruskuc

Gray，Ruskuc（2012）show that any group can arise in this way．
（1）Ruskuc（1999）found a presentation for H_{e} ，where $e \in S$ and S is given by a presentation．
（2）Gray and Ruskuc（2012）develop this to give presentations for $H_{\bar{e}}$ in $\mathrm{IG}(E)$ ．
（3）Given a group G they then construct a biordered set E such that $H_{\bar{e}} \cong G$ ．

Result of Gray and Ruskuc

Gray, Ruskuc (2012) show that any group can arise in this way.
(1) Ruskuc (1999) found a presentation for H_{e}, where $e \in S$ and S is given by a presentation.
(2) Gray and Ruskuc (2012) develop this to give presentations for $H_{\bar{e}}$ in IG (E).
(3) Given a group G they then construct a biordered set E such that $H_{\bar{e}} \cong G$.

Result of Gray and Ruskuc

Gray, Ruskuc (2012) show that any group can arise in this way.
(1) Ruskuc (1999) found a presentation for H_{e}, where $e \in S$ and S is given by a presentation.
(2) Gray and Ruskuc (2012) develop this to give presentations for $H_{\bar{e}}$ in $\mathrm{IG}(E)$.
(3) Given a group G they then construct a biordered set E such that $H_{\bar{e}} \cong G$.

A current popular pastime

Question Given an idempotent generated semigroup S, find the groups $H_{\bar{e}}$ in $\operatorname{IG}(E)$. More particularly, find when $H_{\bar{e}} \cong H_{e}$.
(1) 2010 Brittenham, Margolis and Meakin If $A \in E\left(M_{n}(D)\right)$ and $\operatorname{rank} A=1$, then $H_{A} \cong H_{A} \cong D^{*}$
(23) 2012 Gray, Ruskuc If $e \in E\left(\mathcal{T}_{n}\right)$ and ranke $=r \leq n-2$, then $H_{\bar{e}} \cong H_{e} \cong \mathcal{S}_{r}$.
(3) 2014 Dolinka. Gray If $A \in E\left(M_{n}(D)\right)$ and rank $A=r<n / 3$, then $H_{\bar{A}} \cong H_{A} \cong \mathrm{GL}(r, D)$.
For all of these cases, the rank $n-1$ idempotents produce free groups in IG(E)

A current popular pastime

Question Given an idempotent generated semigroup S, find the groups $H_{\bar{e}}$ in $\operatorname{IG}(E)$. More particularly, find when $H_{\bar{e}} \cong H_{e}$.
(1) 2010 Brittenham, Margolis and Meakin If $A \in E\left(M_{n}(D)\right)$ and $\operatorname{rank} A=1$, then $H_{\bar{A}} \cong H_{A} \cong D^{*}$.
(2) 2012 Gray, Ruskuc If $e \in E\left(T_{n}\right)$ and ranke $=r \leq n-2$, then
(3) 2014 Dolinka, Gray If $A \in E\left(M_{n}(D)\right)$ and $\operatorname{rank} A=r<n / 3$, then $H_{A} \cong H_{A} \cong \mathrm{GL}(r, D)$.
For all of these cases, the rank $n-1$ idempotents produce free groups in IG(E)

A current popular pastime

Question Given an idempotent generated semigroup S, find the groups $H_{\bar{e}}$ in $\operatorname{IG}(E)$. More particularly, find when $H_{\bar{e}} \cong H_{e}$.
(1) 2010 Brittenham, Margolis and Meakin If $A \in E\left(M_{n}(D)\right)$ and rank $A=1$, then $H_{\bar{A}} \cong H_{A} \cong D^{*}$.
(2) 2012 Gray, Ruskuc If $e \in E\left(\mathcal{T}_{n}\right)$ and rank $e=r \leq n-2$, then $H_{\bar{e}} \cong H_{e} \cong \mathcal{S}_{r}$.
(3) 2014 Dolinka, Gray If $A \in E\left(M_{n}(D)\right)$ and rank $A=r<n / 3$, then $H_{A} \cong H_{A} \cong G L(r, D)$.

For all of these cases, the rank $n-1$ idempotents produce free groups in IG(E)

A current popular pastime

Question Given an idempotent generated semigroup S, find the groups $H_{\bar{e}}$ in $\operatorname{IG}(E)$. More particularly, find when $H_{\bar{e}} \cong H_{e}$.
(1) 2010 Brittenham, Margolis and Meakin If $A \in E\left(M_{n}(D)\right)$ and $\operatorname{rank} A=1$, then $H_{\bar{A}} \cong H_{A} \cong D^{*}$.
(2) 2012 Gray, Ruskuc If $e \in E\left(\mathcal{T}_{n}\right)$ and rank $e=r \leq n-2$, then $H_{\bar{e}} \cong H_{e} \cong \mathcal{S}_{r}$.
(3) 2014 Dolinka, Gray If $A \in E\left(M_{n}(D)\right)$ and $\operatorname{rank} A=r<n / 3$, then $H_{\bar{A}} \cong H_{A} \cong \mathrm{GL}(r, D)$.

For all of these cases, the rank $n-1$ idempotents produce free groups in IG (E)

A current popular pastime

Question Given an idempotent generated semigroup S, find the groups $H_{\bar{e}}$ in $\operatorname{IG}(E)$. More particularly, find when $H_{\bar{e}} \cong H_{e}$.
(1) 2010 Brittenham, Margolis and Meakin If $A \in E\left(M_{n}(D)\right)$ and rank $A=1$, then $H_{\bar{A}} \cong H_{A} \cong D^{*}$.
(2) 2012 Gray, Ruskuc If $e \in E\left(\mathcal{T}_{n}\right)$ and rank $e=r \leq n-2$, then $H_{\bar{e}} \cong H_{e} \cong \mathcal{S}_{r}$.
(3) 2014 Dolinka, Gray If $A \in E\left(M_{n}(D)\right)$ and $\operatorname{rank} A=r<n / 3$, then $H_{A} \cong H_{A} \cong \mathrm{GL}(r, D)$.
For all of these cases, the rank $n-1$ idempotents produce free groups in $\mathrm{IG}(E)$.

A current popular pastime－why not join in？

Observation Sets and vector spaces are examples of independence algebras．

Question Let A be an independence algebra with rank $A=n$ and let

$$
S=S(\text { End }(A))=\{\alpha \in \operatorname{End} A: \operatorname{rank} \alpha<n\}=\langle E\rangle .
$$

If $e \in E(S)$ with ranke $=n-1$ ，then $H_{\bar{e}}$ is free．
Is it true that for $e \in E(S)$ with rank $e \leq n-2$ ，

$$
H_{e} \cong H_{e} ?
$$

What if rank $e=1$ ？
What if rank $c=1$ and A is a free G－act？

A current popular pastime - why not join in?

Observation Sets and vector spaces are examples of independence algebras.

Question Let A be an independence algebra with $\operatorname{rank} A=n$ and let

$$
S=S(\operatorname{End}(A))=\{\alpha \in \operatorname{End} A: \operatorname{rank} \alpha<n\}=\langle E\rangle
$$

If $e \in E(S)$ with rank $e=n-1$, then $H_{\bar{e}}$ is free.
Is it true that for $e \in E(S)$ with ranke $\leq n-2$,

$$
H_{\bar{e}} \cong H_{e} ?
$$

What if rank $e=1$?
What if rank $e=1$ and A is a free G-act?

A current popular pastime－why not join in？

Observation Sets and vector spaces are examples of independence algebras．

Question Let A be an independence algebra with rank $A=n$ and let

$$
S=S(\operatorname{End}(A))=\{\alpha \in \operatorname{End} A: \operatorname{rank} \alpha<n\}=\langle E\rangle
$$

If $e \in E(S)$ with rank $e=n-1$ ，then $H_{\bar{e}}$ is free．
Is it true that for $e \in E(S)$ with rank $e \leq n-2$ ，

$$
H_{\bar{e}} \cong H_{e} ?
$$

What if rank $e=1$ ？
What if rank $e=1$ and A is a free G－act？

A current popular pastime - why not join in?

Observation Sets and vector spaces are examples of independence algebras.

Question Let A be an independence algebra with rank $A=n$ and let

$$
S=S(\operatorname{End}(A))=\{\alpha \in \operatorname{End} A: \operatorname{rank} \alpha<n\}=\langle E\rangle
$$

If $e \in E(S)$ with rank $e=n-1$, then $H_{\bar{e}}$ is free.
Is it true that for $e \in E(S)$ with rank $e \leq n-2$,

$$
H_{\bar{e}} \cong H_{e} ?
$$

What if ranke $=1$?
What if rank $e=1$ and A is a free G-act?

An easy way to get any group in an $\operatorname{IG}(E)$ G and Dandan Yang

Theorem: G and Dandan Yang Let $A=G x_{1} \cup \ldots G x_{n}$ be a free G-act of rank $n \geq 3$, and let $e \in$ End A be a rank 1 idempotent. Then

$$
H_{\bar{e}} \cong H_{e} .
$$

Recall $H_{e} \cong G!$

Corollary Any group occurs as a maximal subgroup of some IG (E)
Note Our proof is very easy; we do not need presentations; we use a natural biordered set.

An easy way to get any group in an IG(E) G and Dandan Yang

Theorem: G and Dandan Yang Let $A=G x_{1} \cup \ldots G x_{n}$ be a free G-act of rank $n \geq 3$, and let $e \in$ End A be a rank 1 idempotent. Then

$$
H_{\bar{e}} \cong H_{e}
$$

Recall $H_{e} \cong G!$
Corollary Any group occurs as a maximal subgroup of some $\operatorname{IG}(E)$.
Note Our proof is very easy; we do not need presentations; we use a natural biordered set.

Going upwards

Theorem: Dolinka, G, Yang Let $A=G x_{1} \cup \ldots G x_{n}$ be a free G-act of rank $n \geq 3$, and let $e \in$ End A be an idempotent with rank $e \leq n-2$. Then

$$
H_{\bar{e}} \cong H_{e} .
$$

Corollary Taking G to be trivial we obtain the Gray/Ruškuc result for \mathcal{T}_{n}.
Corollary Taking $n=1$ we obtain any group (again!)

Where next?

Let A be an independence algebra of rank $n \geq 3$ and $e \in \operatorname{End}(A)$ with ranke $\leq n-2$.

When do we have

$$
H_{\bar{e}} \cong H_{e} ?
$$

(1) True for ranke $e=1, A$ has no constants \mathbf{G} and Yang.
(2) True for $A=V_{4}(D)$, ranke $=2$ Yang et al
(3) Conjectured not true for $A=V_{6}\left(\mathbb{Z}_{2}\right)$, rank $e=2$ O'Brien et al

If we do not have this, what does $H_{\bar{e}}$ look like?
What is the general structure of $\mathrm{IG}(E)$? Is is always weakly abundant? This is certainly true if E is a band \mathbf{G} and Yang.

Where next?

Let A be an independence algebra of rank $n \geq 3$ and $e \in \operatorname{End}(A)$ with ranke $\leq n-2$.

When do we have

$$
H_{\bar{e}} \cong H_{e} ?
$$

(1) True for rank $e=1, A$ has no constants G and Yang.
(2) True for $A=V_{4}(D)$, rank $e=2$ Yang et al
(3) Conjectured not true for $A=V_{6}\left(\mathbb{Z}_{2}\right)$, rank $e=2$ O'Brien et al

If we do not have this, what does $H_{\bar{e}}$ look like?
What is the general structure of $\operatorname{IG}(E)$? Is is always weakly abundant? This is certainly true if E is a band \mathbf{G} and Yang....

[^0]: T is only a monoid if it is trivial.

